Monthly Archives: January 2014

Is the war inspired by hate or by profit?

If it is inspired by hate, then it is pointless. If it is inspired by profit, then war will render it unprofitable. Advertisements

Posted in Uncategorized | Leave a comment

If we can forgive ourselves, we can forgive everyone

1948 Siege of Changchun: The Communist army starved 150,000 civilians to death. “Changchun was like Hiroshima,” Zhang wrote. “The casualties were about the same. Hiroshima took nine seconds; Changchun took five months.” Source:

Posted in Uncategorized | Leave a comment


董坚毅。哈佛大学博士,52年回国,55年支援大西北。57年被定为右派送夹边沟劳教。60年饥荒袭来,董亦不能幸免。其妻顾晓颖(也为留美生)来探视, 待寻得其遗体时,周身皮肉已被割食一空,仅剩头颅挂在骨架之上。夹边沟劳教人员2800多人,饿死2100多人,死难者掩埋草率,累累白骨外露绵延两公 里。

Posted in History | Tagged | Leave a comment

Symbols in Principia Mathematica

“(∃x)φx” — “There exists an x for which φx is true,” or “there exists an x satisfying φx” page 16. 1st ed. “(x)φx” — “the x which satisfies .” Page 31. 1st ed. “E!(x)φx”  — “the x satisfying φx exists”. Page … Continue reading

Posted in Mathematical Philosophy, reference | Leave a comment

It is meaningless to say a set is or is not a member of itself.

A defining function can be used to determine a set whose members are arguments that satisfy . Let denote the set determined by . To say is or is not a member of itself is to use as an argument … Continue reading

Posted in Mathematical Philosophy | Leave a comment

Go back to China at your own risk

萧光琰是1968年12月10日晚自杀的。1920年萧光琰出生于日本(祖籍福建福州),后移居美国。1942年毕业于坡摩那大学化学 系,1945年获得芝加哥大学研究院物理化学博士学位,后任芝加哥大学化学系助理研究员、冶金研究所研究员、美孚石油公司化学师。1950年回国,后到大 连化学物理研究所担任研究员。在抗美援朝、反右运动等一系列运动中,萧光琰都因直率的个性惹来不大不小的麻烦。文革开始后,他却未能逃此劫难,被人怀疑是 特务为美国提供情报,1968年10月5日被关进“牛棚”。有人对他进行审问,对他拳打脚踢,甚至使用皮鞭,打得他遍体鳞伤。当时还有人给他起了个外号叫 “白屎”(博士的谐音)。在饱受了心灵和肉体的双重折磨之后,萧光琰在牛棚服用安眠药(巴比妥)自杀。当天下午,萧光琰的妻子,正在营城子农场劳动改造的 美籍华人甄素辉被拉到化学物理所,被要求继续交待萧光琰的罪行。在萧光琰夫妇被揪斗后,他们15岁的女儿小洛连在嘲骂、追打中过着痛苦的孤独生活。12月 14日,甄素辉和小洛连也一起服用巴比妥自杀了。图为萧光琰在某次博士论文答辩会上留影。 Source:

Posted in Victims of Torture | Tagged , , , , , , | Leave a comment

An example of vicious-circle fallacy in proving identity

Define ” is identical with ” as meaning “whatever is true of is true of ,” i.e. ” always implies .”            (1) Dem. If is identical with and ” is identical with , then is identical with a. Although the … Continue reading

Posted in Mathematical Philosophy, Uncategorized | Leave a comment